ELECTRONICS SYSTEM DESIGN

SECTION-5

ASYNCHRONOUS FINITE STATE
MACHINE




Finite State Machines

Sequential circuits
— primitive sequential elements
— combinational logic
Models for representing sequential circuits
— finite-state machines (Moore and Mealy)
Basic sequential circuits revisited
— shift registers
— counters
Design procedure
— state diagrams
— state transition table
— next state functions

Hardware description languages



Abstraction of state elements

e Divide circuit into combinational logic and state

* Localize the feedback loops and make it easy to break cycles

 Implementation of storage elements leads to various forms of sequential logic
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Forms of sequential logic

Asynchronous sequential logic — state changes occur whenever state
inputs change (elements may be simple wires or delay elements)

Synchronous sequential logic — state changes occur in lock step across all
storage elements (using a periodic waveform - the clock)
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Finite state machine representations

States: determined by possible values in sequential storage elements
Transitions: change of state
Clock: controls when state can change by controlling storage elements

Sequential logic
— sequences through a series of states
— based on sequence of values on input signals
— clock period defines elements of sequence




Example finite state machine diagram

e Combination lock from introduction to course
— 5 states
— 5 self-transitions
— 6 other transitions between states

— 1 reset transition (from all states) to state S1

not new not new not new



Can any sequential system be
represented with a state diagram?

* Shift register OUT1 OUT?2 OUT3

— input value shown
on transition arcs

— output values shown A A i A
within state node CLK




Counters are simple finite state
machines

* Counters

— proceed through well-defined sequence of states in response to enable
 Many types of counters: binary, BCD, Gray-code

— 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...

— 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...
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How do we turn a state diagram into

logic?

* Counter
— 3 flip-flops to hold state
— logic to compute next state

— clock signal controls when flip-flop memory can change
e wait long enough for combinational logic to compute new value

e don't wait too long as that is low performance
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FSM design procedure

Start with counters
— simple because output is just state
— simple because no choice of next state based on input

State diagram to state transition table
— tabular form of state diagram
— like a truth-table
State encoding
— decide on representation of states
— for counters it is simple: just its value
Implementation
— flip-flop for each state bit
— combinational logic based on encoding



FSM design procedure: state diagram
to encoded state transition table

e Tabular form of state diagram
e Like a truth-table (specify output for all input combinations)
* Encoding of states: easy for counters — just use value

present State next state

@ @ @ 0 | 000 001 | 1
1 001 010 2

2 010 011 3

3-bit up-counter @ 3 011 100 4

4 100 101 5

4_ 5 | 101 110 | 6
6 110 111 4

s 111 000 0



Implementation

e D flip-flop for each state bit

e Combinational logic based on encoding

N3

Cl

N1 <=C7T
N2 <= C1C2' + C1'C2

Verilog notation to show
function represents an
input to D-FF

<= C1 xor C2
N3 <= C1C2C3’ + C1'C3 + C2'C3
<= (C1C2)C3’ + (C1’ + C2')C3
<= (C1C2)C3 + (C1C2)'C3

<= (C1C2) xor C3

C3 C2 C1|IN3 N2 N1
0 0 0 0 0 1
0 0 1 0 1 0
0 1 0 0 1 1
0 1 1 1 0 0
1 0 0 1 0 1
1 0 1 1 1 0
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1 1 1 0 0 0
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Back to the shift register

e Input determines next state
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More complex counter example

e Complex counter
— repeats 5 states in sequence
— not a binary number representation

e Step 1: derive the state transition diagram
— count sequence: 000, 010, 011, 101, 110

e Step 2: derive the state transition table from the state transition diagram

Present State|] Next State
C+ B+

0 1

note the don't care conditions that arise from the unused state codes

+
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More complex counter example

(cont’d)
e Step 3: K-maps for next state functions
C+ C B+ C A+

oo ol x HIBIEKE om
A[x1x1] A_’x/ox|1\_ AXU

B B B

C+<=A

B+ <=B+ AC

A+ <= BC



Self-starting counters (cont’d)

e Re-deriving state transition table from don't care assignment

C+ C B+ C A+ C

0 0 0 0 1 1 0 1 0 1 0 0
A 1 1 1 1 A 1 0 0 1 A 0 1 0 0

B B B

Present State|] Next State

C B A | C+ B+ A+

0 0 0 0 1 0

0O 0 1 |(l1_1 ol

0 1 0 0 1 1

0 1 1 1 0 1

1 0 O |lo 1 o

1 0 1 1 1 0

1 1 0 0 0 0

1 1 1 |ln_0o ol




Self-starting counters

e Start-up states
— at power-up, counter may be in an unused or invalid state
— designer must guarantee that it (eventually) enters a valid state
e Self-starting solution
— design counter so that invalid states eventually transition to a valid state
— may limit exploitation of don't cares

implementation
on previous slide



Activity

e 2-bit up-down counter (2 inputs)
— direction: D =0 for up, D = 1 for down
— count: C=0 for hold, C =1 for count



Activity (cont’d)



Counter/shift-register model

e \Values stored in registers represent the state of the circuit

e Combinational logic computes:

— hext state

e function of current state and inputs

— outputs

e values of flip-flops

Inputs

;/ next state

\ logic
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General state machine model

e \Values stored in registers represent the state of the circuit

e Combinational logic computes:
— next state
e function of current state and inputs
— outputs

e function of current state and inputs (Mealy machine)
e function of current state only (Moore machine)

output > » Outputs
;'< logic
Inputs< s
hext state Next State
logic

Current State




State machine model (cont’d)

States: S;, S,, ..., Sy

Inputs: 1, I,, ..., |,
Outputs: O,, O,, ..., O,
Transition function: F(S;, 1))

Output function: F,(S;) or F(S;, 1)

output ) »Outputs
logic /
Inputs<

next state \ Next State
logic j

>

A 4

Current State

Next State
State
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Comparison of Mealy and Moore
machines

e Mealy machines tend to have less states

— different outputs on arcs (n?) rather than states (n)

e Moore machines are safer to use
— outputs change at clock edge (always one cycle later)

— in Mealy machines, input change can cause output change as soon as logic is
done — a big problem when two machines are interconnected — asynchronous
feedback may occur if one isn’t careful

* Mealy machines react faster to inputs

— react in same cycle — don't need to wait for clock

— in Moore machines, more logic may be necessary to decode state into outputs
— more gate delays after clock edge



Comparison of Mealy and Moore

Moore

Mealy

machines (cont’d)
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Specifying outputs for a Moore
machine

e Qutput is only function of state
— specify in state bubble in state diagram
— example: sequence detector for 01 or 10

current | next
reset input state state  output
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Specifying outputs for a Mealy
machine

e Qutput is function of state and inputs
— specify output on transition arc between states
— example: sequence detector for 01 or 10

current | next
reset input state state  output
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Registered Mealy machine (really
Moore)

e Synchronous (or registered) Mealy machine
— registered state AND outputs
— avoids ‘glitchy’ outputs
— easy to implement in PLDs
e Moore machine with no output decoding
— outputs computed on transition to next state rather than after entering

— view outputs as expanded state vector

» Outputs

\ 4

( output

Inputs< logic / =
next state

logic N

Current State

A 4




Example: vending machine

 Release item after 15 cents are deposited

e Single coin slot for dimes, nickels

* No change

Reset

|

Coin
Sensor

» Vending

Machine
FSM

Open

»| Release

Clock

Mechanism




Example: vending machine (cont’d)

e Suitable abstract representation

— tabulate typical input sequences: Reset
* 3 nickels
e nickel, dime
e dime, nickel
e two dimes
— draw state diagram:
e inputs: N, D, reset
e output: open chute
— assumptions:

e assume N and D asserted
for one cycle

e each state has a self loop
for N=D =0 (no coin)




Example: vending machine (cont’d)

* Minimize number of states - reuse states whenever possible

present inputs next output
Reset state D N state open

o¢ 0 0 o¢ 0
0 1 5¢ 0
1 0 10¢ 0
1 1 — —
5¢ 0 0 5¢ 0
0 1 10¢ 0
D 1 0 15¢ 0
1 1 — —
10¢ 0 0 10¢ 0
0 1 15¢ 0
D 1 0 15¢ 0
1 1 — —
15¢ - - 15¢ 1

symbolic state table




Example: vending machine (cont’d)

 Uniquely encode states

present state inputs | next state output
Q1 00 D N D1 DO open
0O O O O 0O O 0
O 1 0 1 0
1 O 1 0 0
1 1 - - —
0O 1 O O 0O 1 0
0 1 1 0 0
1 0 1 1 0
1 1 - — —
1 0 O O 1 O 0
0 1 1 1 0
1 0 1 1 0
1 1 - = —
1 1 - = 1 1 1




Example: Moore implementation

 Mapping to logie: 2 o open Q1
AR 0[L[ 1] 0 o[ o[ 1J o
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Example: vending machine (cont’d)

 One-hot encoding

present state  inputs |next state output
Q3Q2Q1Q0 D N |D3D2D1DO open
00 O 1 0O O O 0 0 1 0 DO=Q0D' N
01 0o 10 o
10 (01 00 O
11 |- - - - DI=QON+ Q1D N
00 1 0 00 0010 o0
o1 10100 O D2=Q0D+ Q1IN+ Q2D N’
10 |1 000 O Q Q Q
11 |- - - - -
01 00 0O [01 00 o0 D3=Q1D+Q2D+ Q2N + Q3
01 |1t o000 O
1 0 |1 000 o OPEN = Q3
R P
1000 - - 1000 1




Equivalent Mealy and Moore state

e Moore machine = Mealy machine
— outputs associated with state 0 outputs associated with transitions
Reset N’ D' + Reset Reset/0 (N’ D’ + Reset)/0

N D’

Reset’ Reset'/1




Example: Mealy implementation

Reset/0 Reset/0
present state inputs | next state output
01 00 D N D1 DO open
. 0O O 0 0 0 0 0
N’ D'/0
0 1 0 1 0
1 0 1 0 0
11 _ _ _
. 0 1 0 0 0 1 0
6’ D70 o 1|1 0o o0
1 0 1 1 1
1 1 - _ _
. 1 0 o o]l 1 o0 O
N"D/0 0 1 1 1 1
1 0 1 1 1
1 1 — — —
1 1 — — 1 1 1
Reset'/1
Open Q1
o[ofIjo DO = QO'N + QON’ + Q1IN + Q1D
i/i)(/i;N DI  =Ql+D+ QON
D okt 7 OPEN = Q10Q0 + Q1IN + Q1D + QOD

Q0



Example: Mealy implementation

DO =QON + QON' + QIN + Q1D
DI  =0Q1+D+ QON
OPEN = Q1Q0 + QIN + Q1D + QOD
aL oL
o, i o o0 01
make sure OPEN is 0 when reset v :D—l—/’/ e,
— by adding AND gate o7 :} T
o ]
H '_DDJ_I_—‘L{\/M oo o
o]
o
L —
e 4 op
i —
- -




Vending machine: Moore to synch.
Mealy

e OPEN =Q1Q0 creates a combinational delay after Q1 and QO change in Moore
implementation

e This can be corrected by retiming, i.e., move flip-flops and logic through each
other to improve delay
e OPEN.d=(Ql1+D+QON)(QO'N+ QON'+ Q1N +Q1D)
= Q1QON'+ Q1IN+ Q1D + QO'ND + QON'D
 Implementation now looks like a synchronous Mealy machine
— itis common for programmable devices to have FF at end of logic
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Vending machine: Mealy to synch.
Mealy

e OPEN.d=Q1Q0+ Q1IN+ Q1D + Q0D

e OPEN.d=(Q1+ D+ QON)(QO'N + QON'+ Q1N + Q1D)
= Q1QON'+ Q1IN+ Q1D + QO'ND + QON'D

0 - Open.d Q1 Open.d Q1
T, A - QL o[ o] 1] 0 o[ o] 1] 0
o
H'—D_IJ’/ s ojof 1] 1]| ofof 1] 1]| |
. D 1({0f 1|1 D X| X| 1| X
Qn ._D— ol 1] 11 0] 1] 1{ 1
v Qo Qo
D vt '
%:DW . 3 T D g w
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an—D_ H — - &
0o — — Yy T
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D= n
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J— Open ull oo Y
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w ] S —
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Mealy and Moore examples

* Recognize A B=0,1

— Mealy or Moore?

;\ P> r} N

O
Q QO

clock
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;



Mealy and Moore examples (cont’d)

e Recognize A,B=1,0then0,1

— Mealy or Moore? F>W ) }
A

)
e |
B | 5 Q4|>o
]>> Qe—
clock —
= B
A D O . D O }r
pia pia >J
- D Q *——D qQ
P - g
lock




Hardware Description Languages
and Sequential Logic
e Flip-flops

— representation of clocks - timing of state changes
— asynchronous vs. synchronous

e FSMs

— structural view (FFs separate from combinational logic)

— behavioral view (synthesis of sequencers — not in this
course)

e Data-paths = data computation (e.g., ALUs,
comparators) + registers
— use of arithmetic/logical operators
— control of storage elements



Example: reduce-1-string-by-1

e Remove one 1 from every string of 1s on the
iInput

Moore Mealy

&

1/0

: )
1 1/1



Verilog FSM - Reduce 1s example

state assignment
(easy to change,
if in one place)

e Moore machine

module reduce (clk, reset,
input clk, reset, iIn;
output out;

in, out);

parameter zero = 2'b00;
parameter onel = 2’'b01;
parameter twols = 2'bl0; @
reg out;
reg [2:1] state; // state variables 1 0
reg [2:1] next_state;
always @(posedge clk) ®
IT (reset) state = zero;
else state = next _state; 0 1



Moore Verilog FSM (cont’d)

always @(in or state) _ _
<  crucial to include

case (state)

zero:
// last 1Input was a zero
begin
1T (In) next _state = onel;
else next _state = zero;
end
onel:
// we"ve seen one 1
begin
1T (Iin) next _state = twols;
else next _state = zero;
end
twols:
// we"ve seen at least 2 ones
begin
1T (Iin) next _state = twols;
else next state = zero;
end
endcase

all signals that are
input to state determination

note that output
depends only on state

always @(state)
case (state)

zero: out = 0O;

onel: out = 0O;

twols: out = 1;
endcase

endmodule



Mealy Verilog FSM

module reduce (clk, reset, iIn, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables
reg next_state;

always @(posedge clk)
iIT (reset) state = zero;
else state = next_state;

’ 0/0
always @(in or state) @

case (state)
zero: // last 1nput was a zero
begin
out = O;
1T (in) next _state

= one;
else next state = zero;
end 1/1
one: // we"ve seen one 1
1T (in) begin
next state = one; out = 1;
end else begin
next state = zero; out = 0;
end
endcase
endmodule



Synchronous Mealy Machine

module reduce (clk, reset, iIn, out);
input clk, reset, in;
output out;
reg out;
reg state; // state variables

always @(posedge clk)
IT (reset) state = zero;
else
case (state)
zero: // last i1nput was a zero
begin
out = 0O;
1T (in) state
else state
end
one: // we"ve seen one 1
1T (in) begin
state = one; out = 1;
end else begin
state = zero; out = 0O;
end
endcase
endmodule



Finite state machines summary

e Models for representing sequential circuits

— abstraction of sequential elements

— finite state machines and their state diagrams

— inputs/outputs

— Mealy, Moore, and synchronous Mealy machines
e Finite state machine design procedure

— deriving state diagram

— deriving state transition table

— determining next state and output functions

— implementing combinational logic

e Hardware description languages



Hazards

A hazard is a condition in a logically correct digital circuit
or computer program that may lead to a logically incorrect
output

Static hazards: Output should stay constant, but doesn't

Static 1 hazard: Output should be a constant 1, but when
one Input Is changed drops to 0 and then recovers to 1.

Cannot occur in a POS implementation

Static 0 hazard: Output should be a constant 0, but when
one Input is changed rises to 1 and then drops back to 0

Cannot occur in a SOP implementation

Dynamic Hazards: An input transition is supposed to cause
a single transition, but causes two or more transitions.



Hazards

Why do hazards matter?

The output of a hazard-prone circuit or program depends on
conditions other than the inputs and the state

The signal passed to another circuit by a hazard-prone
circuit depends on exactly when the output is read

In edge-triggered logic circuits, a momentary glitch
resulting from a hazard can be converted into an erroneous
output



Static Hazards

* The circuit x’y’ + yz has a static 1 hazard

* |f the inputy is changed from O to 1, control of the output of
the OR gate shifts from one AND gate to the other

* Any difference in delays between the two AND gates will
result in a glitch in the output of the OR



Static Hazards

* The timing diagram below shows the inputs and
outputs of a circuit for x’y’ + yz with a static 1 hazard

] 125 |250 |Z75 =]
input ®

mpuw .....................................................................................................................................................................................................
“putz .....................................................................................................................................................................................................




Static Hazards

Static 1 hazard detection using a Karnaugh map:
Reduce the logic function to a minimal sum of prime
Implicants

A Karnaugh map that contains adjacent, disjoint prime
Implicants Is subject to a static 1 hazard

Adjacent prime implicants: Only one variable needs to
change value to move from one prime implicant to the other

Disjoint prime implicants

No prime implicant covers cells of both of the disjoint
prime implicants

Correspond to AND gates that must both change their
outputs when a particular input is changed



Static Hazards
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Static Hazards
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Static Hazards

O 125 230 375




Dynamic Hazards
* BchangesfromOto1 (1,0,1,0 output change)
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Dynamic Hazards

® There are also two types of Dynamic hazards: the
0 output transitions to a 1 back to 0 and then 1

again. Or the 1 output transitions toa 0 backto 1
and then 0 again.

® Dynamic hazards happen because of multiple
paths in a multilevel network, each with its own
asymmetric delay. Circuits which contain multiple
paths of the same signal should be re-clocked
before the signal is used by a circuit.



Dynamic Hazards

f Static Hazards are removed from the design,
Dynamic Hazards will not occur. A Karnaugh map
K-map] is the easiest way to eliminate a Static
Hazard or glitches. These timing hazards will
develop as random or intermittent circuit
failures. The type of circuit failure will depend on
the signals used in the AND / OR gate circuit, and
perhaps how often they change state.




Dynamic Hazards

® Another method to eliminate timing hazards from
effecting an IC down the line is to re-clock the
final output signals. Re-clocking the sighal does
not eliminate the glitch, but stops it from causing
circuit failure. Re-clocking the signal seems to be
common for designers unsure of why the glitch
occurs, or how to stop the glitch from developing.
Solving the problem via a K-map results in an
additional AND gate, re-clocking requires an
additional flip flop.




e XOR function

Function Hazards
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