ELECTRONICS SYSTEM DESIGN

SECTION-5

ASYNCHRONOUS FINITE STATE MACHINE

Finite State Machines

- Sequential circuits
 - primitive sequential elements
 - combinational logic
- Models for representing sequential circuits
 - finite-state machines (Moore and Mealy)
- Basic sequential circuits revisited
 - shift registers
 - counters
- Design procedure
 - state diagrams
 - state transition table
 - next state functions
- Hardware description languages

Abstraction of state elements

- Divide circuit into combinational logic and state
- Localize the feedback loops and make it easy to break cycles
- Implementation of storage elements leads to various forms of sequential logic

Forms of sequential logic

- Asynchronous sequential logic state changes occur whenever state inputs change (elements may be simple wires or delay elements)
- Synchronous sequential logic state changes occur in lock step across all storage elements (using a periodic waveform - the clock)

Finite state machine representations

- States: determined by possible values in sequential storage elements
- Transitions: change of state
- Clock: controls when state can change by controlling storage elements
- Sequential logic
 - sequences through a series of states
 - based on sequence of values on input signals
 - clock period defines elements of sequence

Example finite state machine diagram

- Combination lock from introduction to course
 - 5 states
 - 5 self-transitions
 - 6 other transitions between states

Can any sequential system be represented with a state diagram?

- Shift register
 - input value shown on transition arcs
 - output values shown within state node

Counters are simple finite state machines

- Counters
 - proceed through well-defined sequence of states in response to enable
- Many types of counters: binary, BCD, Gray-code
 - 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
 - 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

How do we turn a state diagram into logic?

Counter

- 3 flip-flops to hold state
- logic to compute next state
- clock signal controls when flip-flop memory can change
 - wait long enough for combinational logic to compute new value
 - don't wait too long as that is low performance

FSM design procedure

- Start with counters
 - simple because output is just state
 - simple because no choice of next state based on input
- State diagram to state transition table
 - tabular form of state diagram
 - like a truth-table
- State encoding
 - decide on representation of states
 - for counters it is simple: just its value
- Implementation
 - flip-flop for each state bit
 - combinational logic based on encoding

FSM design procedure: state diagram to encoded state transition table

- Tabular form of state diagram
- Like a truth-table (specify output for all input combinations)
- Encoding of states: easy for counters just use value

present state		next state			
0	000	001	1		
1	001	010	2		
2	010	011	3		
3	011	100	4		
4	100	101	5		
5	101	110	6		
6	110	111	7		
7	111	000	0		

Implementation

- D flip-flop for each state bit
- Combinational logic based on encoding

C3	C2	C1	N3	N2	N1
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

Verilog notation to show function represents an input to D-FF

Back to the shift register

Input determines next state

In	<u>C1</u>	C2	C3	N1	N2	N3
In 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	0	0	0	0
0	0	0	1	0 0 0 0 0 0 0 1 1 1	0 0	0
0	0	1	0	0	0	0 1 0 0 1 1 0 0 1 1 0
0	0	1	0 1 0 1 0 1 0 1 0 1	0	0 0 1 1	1
0	1	1 0 0	0	0	1	0
0	1	0	1	0	1	0
0	1	1	0	0	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	0
1	0	0	1	1	0 0 0 0	0
1	0 0	0 1 1 0	0	1	0	1
1	0	1	1	1	0	1
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	1	1	0 1 1
1	1	1	1	1	1	1

More complex counter example

- Complex counter
 - repeats 5 states in sequence
 - not a binary number representation
- Step 1: derive the state transition diagram
 - count sequence: 000, 010, 011, 101, 110
- Step 2: derive the state transition table from the state transition diagram

Pre	sent	State	Nex	kt Sta	te
С	В	Α	C+	B+	A +
0	0	0	0	1	0
0	0	1	_	_	_
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	_	_	_
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	_	_	_

note the don't care conditions that arise from the unused state codes

More complex counter example (cont'd)

• Step 3: K-maps for next state functions

$$C + <= A$$

$$B+ <= B' + A'C'$$

$$A+ <= BC'$$

Self-starting counters (cont'd)

Re-deriving state transition table from don't care assignment

A+		(С	
	0	1	0	0
Α	0	1	0	0
•		[3	

Present S	State	Nex C+	t Stat B+	te A+
0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 1 0 1 0 1	0 1 0 1 0 1	1 1 0 1 1 0	0 0 1 1 0 0

Self-starting counters

- Start-up states
 - at power-up, counter may be in an unused or invalid state
 - designer must guarantee that it (eventually) enters a valid state
- Self-starting solution
 - design counter so that invalid states eventually transition to a valid state
 - may limit exploitation of don't cares

Activity

- 2-bit up-down counter (2 inputs)
 - direction: D = 0 for up, D = 1 for down
 - count: C = 0 for hold, C = 1 for count

Activity (cont'd)

_

Counter/shift-register model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - next state
 - function of current state and inputs
 - outputs
 - values of flip-flops

General state machine model

- Values stored in registers represent the state of the circuit
- Combinational logic computes:
 - next state
 - function of current state and inputs
 - outputs
 - function of current state and inputs (Mealy machine)
 - function of current state only (Moore machine)

State machine model (cont'd)

- States: S₁, S₂, ..., S_k
- Inputs: I₁, I₂, ..., I_m
- Outputs: O₁, O₂, ..., O_n
- Transition function: F_s(S_i, I_i)

• Output function: $F_o(S_i)$ or $F_o(S_i, I_j)$ output logic next state logic Current State

Comparison of Mealy and Moore machines

- Mealy machines tend to have less states
 - different outputs on arcs (n²) rather than states (n)
- Moore machines are safer to use
 - outputs change at clock edge (always one cycle later)
 - in Mealy machines, input change can cause output change as soon as logic is done – a big problem when two machines are interconnected – asynchronous feedback may occur if one isn't careful
- Mealy machines react faster to inputs
 - react in same cycle don't need to wait for clock
 - in Moore machines, more logic may be necessary to decode state into outputs
 more gate delays after clock edge

Comparison of Mealy and Moore machines (cont'd)

Moore

Mealy

Synchronous Mealy

Specifying outputs for a Moore machine

- Output is only function of state
 - specify in state bubble in state diagram
 - example: sequence detector for 01 or 10

	current	next	
input	state	state	output
_	_	Α	
0	Α	В	0
1	Α	С	0
0	В	В	0
1	В	D	0
0	С	Ε	0
1	С	С	0
0	D	E	1
1	D	С	1
0	E	В	1
1	E	D	1
	- 0 1 0 1 0 1 0	input state 0 A 1 A 0 B 1 B 0 C 1 C 0 D 1 D 0 E	input state state - - A 0 A B 1 A C 0 B B 1 B D 0 C E 1 C C 0 D E 1 D C 0 E B

Specifying outputs for a Mealy machine

- Output is function of state and inputs
 - specify output on transition arc between states
 - example: sequence detector for 01 or 10

		current	next	
reset	input	state	state	output
1	_	_	Α	0
0	0	Α	В	0
0	1	Α	С	0
0	0	В	В	0
0	1	В	С	1
0	0	С	В	1
0	1	С	С	0

Registered Mealy machine (really Moore)

- Synchronous (or registered) Mealy machine
 - registered state AND outputs
 - avoids 'glitchy' outputs
 - easy to implement in PLDs
- Moore machine with no output decoding
 - outputs computed on transition to next state rather than after entering
 - view outputs as expanded state vector

Example: vending machine

- Release item after 15 cents are deposited
- Single coin slot for dimes, nickels

- Suitable abstract representation
 - tabulate typical input sequences:
 - 3 nickels
 - nickel, dime
 - dime, nickel
 - two dimes
 - draw state diagram:
 - inputs: N, D, reset
 - output: open chute
 - assumptions:
 - assume N and D asserted for one cycle
 - each state has a self loop for N = D = 0 (no coin)

Minimize number of states - reuse states whenever possible

present	inputs	next	output
state	D N	state	open
O ¢	0 0	0¢	0
	0 1	5¢	0
	1 0	10¢	0
	1 1	_	_
5¢	0 0	5¢	0
	0 1	10¢	0
	1 0	15¢	0
	1 1	_	_
10¢	0 0	10¢	0
	0 1	15¢	0
	1 0	15¢	0
	1 1	_	_
15¢		15¢	1

symbolic state table

Uniquely encode states

present state	inp	uts	next state	output
<u>Q1 Q0</u>	D	Ν	D1 D0	open
0 0	0	0	0 0	0
	0	1	0 1	0
	1	0	1 0	0
	1	1		
0 1	0	0	0 1	0
	0	1	1 0	0
	1	0	1 1	0
	1	1		
1 0	0	0	1 0	0
	0	1	1 1	0
	1	0	1 1	0
	1	1		
1 1	_	-	1 1	1

Example: Moore implementation

Mapping to logic

$$D1 = Q1 + D + Q0 N$$

$$D0 = Q0' N + Q0 N' + Q1 N + Q1 D$$

$$OPEN = Q1 Q0$$

One-hot encoding

p	re	eser	ıt st	ate	inp	uts	nex	kt st	ate	outpu	ut
	23	Q2	Q1	Q0	D	N	D3	D2	D1	D0	open
()	0	0	1	0	0	0	0	0	1	0
					0	1	0	0	1	0	0
					1	0	0	1	0	0	0
					1	1	-	-	-	-	-
()	0	1	0	0	0	0	0	1	0	0
					0	1	0	1	0	0	0
					1	0	1	0	0	0	0
					1	1	-	-	-	-	-
()	1	0	0	0	0	0	1	0	0	0
					0	1	1	0	0	0	0
					1	0	1	0	0	0	0
					1	1	-	-	-	-	_
	l	0	0	0	-	-	1	0	0	0	1

$$D0 = Q0 D' N'$$
 $D1 = Q0 N + Q1 D' N'$
 $D2 = Q0 D + Q1 N + Q2 D' N'$
 $D3 = Q1 D + Q2 D + Q2 N + Q3$
 $OPEN = Q3$

Equivalent Mealy and Moore state diagrams

- Moore machine
 - outputs associated with state
 - N' D' + ResetReset 0¢ N'D'[0] Ν 5¢ D N'D'[0] Ν 10¢ N'D'D [0] N+D15¢ Reset' [1]

- Mealy machine
 - outputs associated with transitions

Example: Mealy implementation

Example: Mealy implementation

```
D0 = Q0'N + Q0N' + Q1N + Q1D
D1 = Q1 + D + Q0N
OPEN = Q1Q0 + Q1N + Q1D + Q0D
```

make sure OPEN is 0 when resetby adding AND gate

Vending machine: Moore to synch. Mealy

- OPEN = Q1Q0 creates a combinational delay after Q1 and Q0 change in Moore implementation
- This can be corrected by retiming, i.e., move flip-flops and logic through each other to improve delay
- OPEN.d = (Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)
 = Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D
- Implementation now looks like a synchronous Mealy machine
 - it is common for programmable devices to have FF at end of logic

Vending machine: Mealy to synch. Mealy

Mealy and Moore examples

- Recognize A,B = 0,1
 - Mealy or Moore?

Mealy and Moore examples (cont'd)

• Recognize A,B = 1,0 then 0,1

Hardware Description Languages and Sequential Logic

- Flip-flops
 - representation of clocks timing of state changes
 - asynchronous vs. synchronous
- FSMs
 - structural view (FFs separate from combinational logic)
 - behavioral view (synthesis of sequencers not in this course)
- Data-paths = data computation (e.g., ALUs, comparators) + registers
 - use of arithmetic/logical operators
 - control of storage elements

Example: reduce-1-string-by-1

Remove one 1 from every string of 1s on the input

Verilog FSM - Reduce 1s example

Moore machine

state assignment (easy to change, if in one place)

Moore Verilog FSM (cont'd)

```
always @(in or state)←
                                                crucial to include
  case (state)
                                                all signals that are
    zero:
                                                input to state determination
  // last input was a zero
   begin
     if (in) next_state = one1;
             next_state = zero;
   end
                                                        note that output
    one1:
                                                        depends only on state
  // we've seen one 1
   begin
     if (in) next_state = two1s;
             next_state = zero;
   end
    two1s:
                                             always @(state)
  // we've seen at least 2 ones
                                               case (state)
   begin
                                                 zero: out = 0;
     if (in) next state = two1s;
                                                 one1: out = 0;
     else
             next state = zero;
                                                two1s: out = 1i
   end
                                               endcase
  endcase
                                           endmodule
```

Mealy Verilog FSM

```
module reduce (clk, reset, in, out);
  input clk, reset, in;
  output out;
  reg out;
 reg state; // state variables
  reg next_state;
  always @(posedge clk)
    if (reset) state = zero;
    else
               state = next_state;
  always @(in or state)
    case (state)
                       // last input was a zero
      zero:
     begin
       out = 0;
       if (in) next_state = one;
       else
               next_state = zero;
     end
      one:
                        // we've seen one 1
     if (in) begin
        next_state = one; out = 1;
     end else begin
        next_state = zero; out = 0;
     end
    endcase
endmodule
```


Synchronous Mealy Machine

```
module reduce (clk, reset, in, out);
 input clk, reset, in;
 output out;
 reg out;
 reg state; // state variables
 always @(posedge clk)
   if (reset) state = zero;
   else
     case (state)
      zero: // last input was a zero
     begin
      out = 0;
       if (in) state = one;
       else state = zero;
     end
     one: // we've seen one 1
     if (in) begin
        state = one; out = 1;
     end else begin
        state = zero; out = 0;
     end
   endcase
endmodule
```

Finite state machines summary

- Models for representing sequential circuits
 - abstraction of sequential elements
 - finite state machines and their state diagrams
 - inputs/outputs
 - Mealy, Moore, and synchronous Mealy machines
- Finite state machine design procedure
 - deriving state diagram
 - deriving state transition table
 - determining next state and output functions
 - implementing combinational logic
- Hardware description languages

Hazards

- A **hazard** is a condition in a *logically correct* digital circuit or computer program that may lead to a logically incorrect output
- Static hazards: Output should stay constant, but doesn't
- Static 1 hazard: Output should be a constant 1, but when one input is changed drops to 0 and then recovers to 1.
- Cannot occur in a POS implementation
- Static 0 hazard: Output should be a constant 0, but when one input is changed rises to 1 and then drops back to 0
- Cannot occur in a SOP implementation
- Dynamic Hazards: An input transition is supposed to cause a single transition, but causes two or more transitions.

Hazards

- Why do hazards matter?
- The output of a hazard-prone circuit or program depends on conditions other than the inputs and the state
- The signal passed to another circuit by a hazard-prone circuit depends on exactly when the output is read
- In edge-triggered logic circuits, a momentary glitch resulting from a hazard can be converted into an erroneous output

- The circuit x'y' + yz has a static 1 hazard
- If the input y is changed from 0 to 1, control of the output of the OR gate shifts from one AND gate to the other
- Any difference in delays between the two AND gates will result in a glitch in the output of the OR

• The timing diagram below shows the inputs and outputs of a circuit for x'y' + yz with a static 1 hazard

- Static 1 hazard detection using a Karnaugh map:
- Reduce the logic function to a minimal sum of prime implicants
- A Karnaugh map that contains adjacent, disjoint prime implicants is subject to a static 1 hazard
- Adjacent prime implicants: Only one variable needs to change value to move from one prime implicant to the other
- Disjoint prime implicants
- No prime implicant covers cells of both of the disjoint prime implicants
- Correspond to AND gates that must both change their outputs when a particular input is changed

$$F(x,y,z) = \overline{xy} + yz$$

$$F(x,y,z) = \overline{xy} + yz + \overline{x}z$$

• B changes from 0 to 1 (1,0,1,0 output change)

- There are also two types of Dynamic hazards: the 0 output transitions to a 1 back to 0 and then 1 again. Or the 1 output transitions to a 0 back to 1 and then 0 again.
- Dynamic hazards happen because of multiple paths in a multilevel network, each with its own asymmetric delay. Circuits which contain multiple paths of the same signal should be re-clocked before the signal is used by a circuit.

If Static Hazards are removed from the design,
 Dynamic Hazards will not occur. A Karnaugh map
 [K-map] is the easiest way to eliminate a Static
 Hazard or glitches. These timing hazards will
 develop as random or intermittent circuit
 failures. The type of circuit failure will depend on
 the signals used in the AND / OR gate circuit, and
 perhaps how often they change state.

 Another method to eliminate timing hazards from effecting an IC down the line is to re-clock the final output signals. Re-clocking the signal does not eliminate the glitch, but stops it from causing circuit failure. Re-clocking the signal seems to be common for designers unsure of why the glitch occurs, or how to stop the glitch from developing. Solving the problem via a K-map results in an additional AND gate, re-clocking requires an additional flip flop.

Function Hazards

• XOR function

